Search results
Results from the WOW.Com Content Network
The IUPAC acknowledges the three divergent definitions of carbonium ion and urges care in the usage of this term. For the remainder of this article, the term carbonium ion will be used in this latter restricted sense, while non-classical carbocation will be used to refer to any carbocation with C–C and/or C–H σ-bonds delocalized by bridging.
The vinyl cation is a carbocation with the positive charge on an alkene carbon. Its empirical formula of the parent ion is C 2 H + 3.Vinyl cation are invoked as reactive intermediates in solvolysis of vinyl halides, [1] [2] as well as electrophilic addition to alkynes and allenes.
The rate of an S N 2 reaction is second order, as the rate-determining step depends on the nucleophile concentration, [Nu −] as well as the concentration of substrate, [RX]. [1] r = k[RX][Nu −] This is a key difference between the S N 1 and S N 2 mechanisms.
This difference arises from acid/base reactions between protic solvents (not aprotic solvents) and strong nucleophiles. While it is true that steric effects also affect the relative reaction rates, [ 12 ] however, for demonstration of principle for solvent polarity on S N 2 reaction rates, steric effects may be neglected.
An alkyl group which is situated trans- to the leaving –OH group may migrate to the carbocation center, but cis- alkyl groups migrate at a very low rate. In the absence of trans- alkyl groups, ring contraction may occur as the major product instead, i.e. the ring carbon itself may migrate.
Adding the hydrogen ion to one carbon atom in the alkene creates a positive charge on the other carbon, forming a carbocation intermediate. The more substituted the carbocation, the more stable it is, due to induction and hyperconjugation. The major product of the addition reaction will be the one formed from the more stable intermediate.
In organic chemistry, a carbanion is an anion in which carbon is negatively charged. [1] [failed verification]Formally, a carbanion is the conjugate base of a carbon acid: . R 3 CH + B − → R 3 C − + HB
This is a two-step mechanism. The more stable the carbocation intermediate is, the faster the reaction will proceed, favoring the products. Stabilization of the carbocation intermediate lowers the activation energy. The reactivity order is (CH3)3C- > (CH3)2CH- > CH3CH2- > CH3-. [14] Unimolecular Elimination Reaction Coordinate