Search results
Results from the WOW.Com Content Network
A load line diagram, illustrating an operating point in the transistor's active region.. Biasing is the setting of the DC operating point of an electronic component. For bipolar junction transistors (BJTs), the operating point is defined as the steady-state DC collector-emitter voltage and the collector current with no input signal applied.
Figure 2: A negative-feedback amplifier. The circuit can be explained by viewing the transistor as being under the control of negative feedback.From this viewpoint, a common-collector stage (Fig. 1) is an amplifier with full series negative feedback.
NPN BJT with forward-biased B–E junction and reverse-biased B–C junction. Charge flow in a BJT is due to diffusion of charge carriers (electrons and holes) across a junction between two regions of different charge carrier concentration. The regions of a BJT are called emitter, base, and collector.
A graphical representation of the current and voltage properties of a transistor; the bias is selected so that the operating point permits maximum signal amplitude without distortion. In electronics , biasing is the setting of DC ( direct current ) operating conditions (current and voltage) of an electronic component that processes time-varying ...
Early, is the variation in the effective width of the base in a bipolar junction transistor (BJT) due to a variation in the applied base-to-collector voltage. A greater reverse bias across the collector–base junction, for example, increases the collector–base depletion width, thereby decreasing the width of the charge carrier portion of the ...
Full hybrid-pi model. The full model introduces the virtual terminal, B′, so that the base spreading resistance, r bb, (the bulk resistance between the base contact and the active region of the base under the emitter) and r b′e (representing the base current required to make up for recombination of minority carriers in the base region) can be represented separately.
The reverse bias safe operating area (or RBSOA) is the SOA during the brief time before turning the device into the off state—during the short time when the base current bias is reversed. As long as the collector voltage and collector current stay within the RBSOA during the entire turnoff, the transistor will be undamaged.
The input capacitor C removes any DC component of the input, and the resistors R 1 and R 2 bias the transistor so that it will remain in active mode for the entire range of the input. The output is an inverted copy of the AC component of the input that has been amplified by the ratio R C / R E and shifted by an amount determined by all four ...