Search results
Results from the WOW.Com Content Network
Face Recognition is used to identify or verify a person from a digital image or a video source using a pre-stored facial data. Visage SDK's face recognition algorithms can measure similarities between people and recognize a person’s identity [citation needed] from a frontal facial image by comparing it to pre-stored faces.
Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. [1] Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene.
Real-time face detection in video footage became possible in 2001 with the Viola–Jones object detection framework for faces. [28] Paul Viola and Michael Jones combined their face detection method with the Haar-like feature approach to object recognition in digital images to launch AdaBoost, the first real-time frontal-view face detector. [29]
In 2020, the PimEyes brand was purchased by the shell corporation Face Recognition Solutions Ltd, moving the website's headquarter from Poland to Seychelles, a popular tax haven. [ 3 ] [ 2 ] It was marketed as a cyberstalking tool to use on photos of celebrities .
For a discussion on the vulnerabilities of Facenet-based face recognition algorithms in applications to the Deepfake videos: Pavel Korshunov; Sébastien Marcel (2022). "The Threat of Deepfakes to Computer and Human Visions" in: Handbook of Digital Face Manipulation and Detection From DeepFakes to Morphing Attacks (PDF). Springer. pp. 97– 114.
The input is an RGB image of the face, scaled to resolution , and the output is a real vector of dimension 4096, being the feature vector of the face image. In the 2014 paper, [ 13 ] an additional fully connected layer is added at the end to classify the face image into one of 4030 possible persons that the network had seen during training time.
Human presence detection is a range of technologies and methods [1] for detecting the presence of a human body in an area of interest (AOI), or verification that computer, smartphone (or other device controlled by software) is operated by human.
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]