Search results
Results from the WOW.Com Content Network
Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. [1] The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.
The transonic speed range is that range of speeds within which the airflow over different parts of an aircraft is between subsonic and supersonic. So the regime of flight from Mcrit up to Mach 1.3 is called the transonic range. Supersonic: 1.2–5.0 794–3,308 915–3,806 1,470–6,126 410–1,702
High subsonic wind tunnels, between Mach 0.4 and 0.75, and transonic wind tunnels, between Mach 0.75 and 1.2, are designed on the same principles as the subsonic wind tunnels. Testing at transonic speeds presents additional problems, mainly due to the reflection of the shock waves from the walls of the test section.
Supersonic aircraft, such as Concorde, Tu-144, the English Electric Lightning, Lockheed F-104, Dassault Mirage III, and MiG 21, are intended to exceed Mach 1.0 in level flight, and are therefore designed with very thin wings. Their critical Mach numbers are higher than those of subsonic and transonic aircraft, but are still less than Mach 1.0.
A problem is called subsonic if all the speeds in the problem are less than the speed of sound, transonic if speeds both below and above the speed of sound are present (normally when the characteristic speed is approximately the speed of sound), supersonic when the characteristic flow speed is greater than the speed of sound, and hypersonic ...
With its 26-foot (8 m) test section and airspeed up to Mach 1, it is the largest transonic wind tunnel facility in the world. [15] Frank Wattendorf reported on this wind tunnel for a US response. [16] On 22 June 1942, Curtiss-Wright financed construction of one of the nation's largest subsonic wind tunnels in Buffalo, New York.
The supersonic flow over a supercritical airfoil terminates in a weaker shock, thereby postponing shock-induced boundary layer separation. A supercritical aerofoil (supercritical airfoil in American English) is an airfoil designed primarily to delay the onset of wave drag in the transonic speed range.
Instead of a fixed gearbox, it uses an electric motor to turn the turbine(s) behind the fan at an ideal speed for each phase of flight. The company claimed it would support efficient take-off, subsonic, supersonic, and hypersonic speeds. The electric motor is powered by a generator in turn powered by a turbine.