Search results
Results from the WOW.Com Content Network
Historically, the term 'free energy' has been used for either quantity. In physics, free energy most often refers to the Helmholtz free energy, denoted by A (or F), while in chemistry, free energy most often refers to the Gibbs free energy. The values of the two free energies are usually quite similar and the intended free energy function is ...
F is the Helmholtz free energy (sometimes also called A, particularly in the field of chemistry) (SI: joules, CGS: ergs), U is the internal energy of the system (SI: joules, CGS: ergs), T is the absolute temperature of the surroundings, modelled as a heat bath, S is the entropy of the system (SI: joules per kelvin, CGS: ergs per kelvin).
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...
Its symbol is Δ f G˚. All elements in their standard states (diatomic oxygen gas, graphite, etc.) have standard Gibbs free energy change of formation equal to zero, as there is no change involved. Δ f G = Δ f G˚ + RT ln Q f, where Q f is the reaction quotient. At equilibrium, Δ f G = 0, and Q f = K, so the equation becomes Δ f G˚ = − ...
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm).
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
Mixture of polymers and solvent on a lattice. Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing.
In chemistry and thermodynamics, the enthalpy of neutralization (ΔH n) is the change in enthalpy that occurs when one equivalent of an acid and a base undergo a neutralization reaction to form water and a salt. It is a special case of the enthalpy of reaction. It is defined as the energy released with the formation of 1 mole of water.