enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  3. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    The radius of such a curve is 5729.57795. If the chord definition is used, each 100-unit chord length will sweep 1 degree with a radius of 5729.651 units, and the chord of the whole curve will be slightly shorter than 600 units.

  4. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    Intuitively, the curvature describes for any part of a curve how much the curve direction changes over a small distance travelled (e.g. angle in rad/m), so it is a measure of the instantaneous rate of change of direction of a point that moves on the curve: the larger the curvature, the larger this rate of change.

  5. Hallade method - Wikipedia

    en.wikipedia.org/wiki/Hallade_method

    The following can be used to find the versine of a given constant radius curve: [2] The Hallade method is to use the chord to continuously measure the versine in an overlapping pattern along the curve. The versine values for the perfect circular curve would have the same number. [3]

  6. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  7. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad ...

  8. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    This curve will in general have different curvatures for different normal planes at p. The principal curvatures at p, denoted k 1 and k 2, are the maximum and minimum values of this curvature. Here the curvature of a curve is by definition the reciprocal of the radius of the osculating circle. The curvature is taken to be positive if the curve ...

  9. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    If a curve γ represents the path of a particle, then the instantaneous velocity of the particle at a given point P is expressed by a vector, called the tangent vector to the curve at P. Mathematically, given a parametrized C 1 curve γ = γ(t), for every value t = t 0 of the parameter, the vector ′ = | = is the tangent vector at the point P ...