enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    The line integrals of complex functions can be evaluated using a number of techniques. The most direct is to split into real and imaginary parts, reducing the problem to evaluating two real-valued line integrals.

  3. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.

  4. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve.

  5. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. [5] Contour integration methods include: direct integration of a complex-valued function along a curve in the complex plane; application of the Cauchy integral formula; and; application of the residue ...

  6. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.

  7. Feynman parametrization - Wikipedia

    en.wikipedia.org/wiki/Feynman_parametrization

    Feynman parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics as well.

  8. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  9. Differential form - Wikipedia

    en.wikipedia.org/wiki/Differential_form

    A differential 1-form is integrated along an oriented curve as a line integral. The expressions dx i ∧ dx j, where i < j can be used as a basis at every point on the manifold for all 2-forms. This may be thought of as an infinitesimal oriented square parallel to the x i – x j-plane.