Search results
Results from the WOW.Com Content Network
It is often preferable to work directly with these as they contain all the information that the full correlation functions contain since any disconnected diagram is merely a product of connected diagrams. By excluding other sets of diagrams one can define other correlation functions such as one-particle irreducible correlation functions.
In quantum field theory, the theory of a free (or non-interacting) scalar field is a useful and simple example which serves to illustrate the concepts needed for more complicated theories. It describes spin-zero particles. There are a number of possible propagators for free scalar field theory. We now describe the most common ones.
The number of ways to link an X to two external lines is 4 × 3, and either X could link up to either pair, giving an additional factor of 2. The remaining two half-lines in the two X s can be linked to each other in two ways, so that the total number of ways to form the diagram is 4 × 3 × 4 × 3 × 2 × 2, while the denominator is 4! × 4 ...
In quantum field theory, a tadpole is a one-loop Feynman diagram with one external leg, giving a contribution to a one-point correlation function (i.e., the field's vacuum expectation value). One-loop diagrams with a propagator that connects back to its originating vertex are often also referred as tadpoles.
Diagrams with loops (in graph theory, these kinds of loops are called cycles, while the word loop is an edge connecting a vertex with itself) correspond to the quantum corrections to the classical field theory. Because one-loop diagrams only contain one cycle, they express the next-to-classical contributions called the semiclassical contributions.
Each internal line is represented by a factor 1/(q 2 + m 2), where q is the momentum flowing through that line. Any unconstrained momenta are integrated over all values. The result is divided by a symmetry factor, which is the number of ways the lines and vertices of the graph can be rearranged without changing its connectivity.
Wick's theorem is a method of reducing high-order derivatives to a combinatorics problem. [1] It is named after Italian physicist Gian Carlo Wick. [2] It is used extensively in quantum field theory to reduce arbitrary products of creation and annihilation operators to sums of products of pairs of these operators.
For example, renormalization in QED modifies the mass of the free field electron to match that of a physical electron (with an electromagnetic field), and will in doing so add a term to the free field Lagrangian which must be cancelled by a counterterm in the interaction Lagrangian, that then shows up as a two-line vertex in the Feynman diagrams.