Search results
Results from the WOW.Com Content Network
The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: = If the force is variable, then work is given by the line integral:
This is the definition declared in the modern International System of Units in 1960. [13] The definition of the joule as J = kg⋅m 2 ⋅s −2 has remained unchanged since 1946, but the joule as a derived unit has inherited changes in the definitions of the second (in 1960 and 1967), the metre (in 1983) and the kilogram . [14]
Work: W: Transferred energy joule (J) L 2 M T −2: scalar Young's modulus: E: Ratio of stress to strain pascal (Pa = N/m 2) L −1 M T −2: scalar; assumes isotropic linear material spring constant: k: k is the torsional constant (measured in N·m/radian), which characterizes the stiffness of the torsional spring or the resistance to angular ...
The mechanical advantage given by a simple machine allowed for less force to be used in exchange for that force acting over a greater distance for the same amount of work. Analysis of the characteristics of forces ultimately culminated in the work of Archimedes who was especially famous for formulating a treatment of buoyant forces inherent in ...
In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed.
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...
In these cases, the above three conditions are not mathematically equivalent. For example, the magnetic force satisfies condition 2 (since the work done by a magnetic field on a charged particle is always zero), but does not satisfy condition 3, and condition 1 is not even defined (the force is not a vector field, so one cannot evaluate its curl).
The kinetic energy of an object is equal to the work, force times displacement , needed to achieve its stated velocity. Having gained this energy during its acceleration, the mass maintains this kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest. [2]