Search results
Results from the WOW.Com Content Network
The vaporized getter, usually a volatile metal, instantly reacts with any residual gas, and then condenses on the cool walls of the tube in a thin coating, the getter spot or getter mirror, which continues to absorb gas. This is the most common type, used in low-power vacuum tubes. Non-evaporable getter (NEG) [8]
Zirconium is extracted from zirconium ore by removing the oxygen and silica. This process, known as the Kroll process, was first applied to titanium. The Kroll process results in an alloy containing hafnium. The hafnium and other impurities are removed in a subsequent step. Zirconium hydride is created by combining refined zirconium with hydrogen.
In this setting, gaseous molecules of the hydrocarbon fuel are absorbed on the surface of the anode in the presence of water vapor, with carbon dioxide as the primary reaction product; hydrogen atoms are efficiently stripped off to be turned into H+ ions then moving into the electrolyte to the other side where they react with oxygen in the air ...
Metallography allows the metallurgist to study the microstructure of metals. A micrograph of bronze revealing a cast dendritic structure Al-Si microstructure. Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. [1]
The use of flux or self-fluxing material is required to prevent oxidation. Torch brazing of copper can be done without the use of flux if it is brazed with a torch using oxygen and hydrogen gas, rather than oxygen and other flammable gases. Machine torch brazing is commonly used where a repetitive braze operation is being carried out.
The best known explanation of the oxygen effect is the oxygen fixation hypothesis developed by Alexander in 1962, [9] which posited that radiation-induced non-restorable or "fixed" nuclear DNA lesions are lethal to cells in the presence of diatomic oxygen. [10] [11] Recent hypotheses include one based on oxygen-enhanced damage from first ...
It is resistant to corrosion and acids, and some alloys can withstand a fire in pure oxygen. It is commonly used in applications with highly corrosive conditions. Small additions of aluminium and titanium form an alloy (K-500) with the same corrosion resistance but with much greater strength due to gamma prime formation on aging.
Oxygen evolution is the chemical process of generating elemental diatomic oxygen (O 2) by a chemical reaction, usually from water, the most abundant oxide compound in the universe. Oxygen evolution on Earth is effected by biotic oxygenic photosynthesis, photodissociation, hydroelectrolysis, and thermal decomposition of various oxides and oxyacids.