Search results
Results from the WOW.Com Content Network
Essentially, the matrices A and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear transformation as Λ. Conversely, suppose a matrix A is diagonalizable. Let P be a non-singular square matrix such that P −1 AP is some diagonal matrix D.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
The following discussion uses the simplest case, where the system has two lumped springs and two lumped masses, and only two mode shapes are assumed. Hence M = [m 1, m 2] and K = [k 1, k 2]. A mode shape is assumed for the system, with two terms, one of which is weighted by a factor B, e.g. Y = [1, 1] + B[1, −1].
If A is Hermitian and full-rank, the basis of eigenvectors may be chosen to be mutually orthogonal. The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0.
Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.
Using generalized eigenvectors, a set of linearly independent eigenvectors of can be extended, if necessary, to a complete basis for . [8] This basis can be used to determine an "almost diagonal matrix" J {\displaystyle J} in Jordan normal form , similar to A {\displaystyle A} , which is useful in computing certain matrix functions of A ...
In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...
Now, fix a basis B of V over K and suppose M ∈ Mat K (V) is a matrix. Define the linear map T : V → V pointwise by Tx = Mx, where on the right-hand side x is interpreted as a column vector and M acts on x by matrix multiplication. We now say that x ∈ V is an eigenvector of M if x is an eigenvector of T.