enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brunner Munzel Test - Wikipedia

    en.wikipedia.org/wiki/Brunner_Munzel_Test

    The core difference is that the Mann-Whitney U test assumes equal variances and a location shift model, while the Brunner Munzel test does not require these assumptions, making it more robust and applicable to a wider range of conditions. As a result, multiple authors recommend using the Brunner Munzel instead of the Mann-Whitney U test by default.

  3. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The F table serves as a reference guide containing critical F values for the distribution of the F-statistic under the assumption of a true null hypothesis. It is designed to help determine the threshold beyond which the F statistic is expected to exceed a controlled percentage of the time (e.g., 5%) when the null hypothesis is accurate.

  4. Jonckheere's trend test - Wikipedia

    en.wikipedia.org/wiki/Jonckheere's_Trend_Test

    Cast the data into an ordered contingency table, with the levels of the independent variable increasing from left to right, and values of the dependent variable increasing from top to bottom. For each entry in the table, count all other entries that lie to the ‘South East’ of the particular entry.

  5. F-test of equality of variances - Wikipedia

    en.wikipedia.org/wiki/F-test_of_equality_of...

    In statistics, an F-test of equality of variances is a test for the null hypothesis that two normal populations have the same variance.Notionally, any F-test can be regarded as a comparison of two variances, but the specific case being discussed in this article is that of two populations, where the test statistic used is the ratio of two sample variances. [1]

  6. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    Consider an experiment to study the effect of three different levels of a factor on a response (e.g. three levels of a fertilizer on plant growth). If we had 6 observations for each level, we could write the outcome of the experiment in a table like this, where a 1, a 2, and a 3 are the three levels of the factor being studied.

  7. Student's t-test - Wikipedia

    en.wikipedia.org/wiki/Student's_t-test

    The assumptions underlying a t-test in the simplest form above are that: X follows a normal distribution with mean μ and variance σ 2 /n. s 2 (n − 1)/σ 2 follows a χ 2 distribution with n − 1 degrees of freedom. This assumption is met when the observations used for estimating s 2 come from a normal distribution (and i.i.d. for each group).

  8. Yates's correction for continuity - Wikipedia

    en.wikipedia.org/wiki/Yates's_correction_for...

    The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = = The following is Yates's corrected version of Pearson's chi-squared statistics:

  9. PERT distribution - Wikipedia

    en.wikipedia.org/wiki/PERT_distribution

    This assumption about the mean was first proposed in Clark, 1962 [1] for estimating the effect of uncertainty of task durations on the outcome of a project schedule being evaluated using the program evaluation and review technique, hence its name. The mathematics of the distribution resulted from the authors' desire to make the standard ...