Search results
Results from the WOW.Com Content Network
Chemosynthetic communities in different environments are important biological systems in terms of their ecology, evolution and biogeography, as well as their potential as indicators of the availability of permanent hydrocarbon- based energy sources. In the process of chemosynthesis, bacteria produce organic matter where photosynthesis is ...
The term "chemosynthesis", coined in 1897 by Wilhelm Pfeffer, ... Iron-oxidizing bacteria are chemotrophic bacteria that derive energy by oxidizing dissolved ferrous ...
They are the predominant population in the majority of hydrothermal vents because their source of energy is widely available, and chemosynthesis rates increase in aerobic conditions. The bacteria at hydrothermal vents are similar to the types of sulfur bacteria found in other H 2 S-rich environments - except Thiomicrospira has replaced ...
Bacteria can metabolise in different ways, most commonly by heterotrophic or autotrophic (either photosynthetic or chemosynthetic) processes. Bacteria reproduce through binary fission, though they can still share genetic information between individuals either by transduction, transformation, or conjugation. [citation needed]
Chemosynthetic bacteria and archaea found around hydrothermal vents form the base of the food chain, supporting diverse organisms including giant tube worms, clams, limpets, and shrimp. Active hydrothermal vents are thought to exist on Jupiter 's moon Europa and Saturn 's moon Enceladus , [ 2 ] [ 3 ] and it is speculated that ancient ...
Most chemosynthetic bacteria form symbiotic associations with other small eukaryotes [9] The electrons that are released from hydrogen sulfide will provide the energy to sustain a proton gradient across the bacterial cytoplasmic membrane. This movement of protons will eventually result in the production of adenosine triphosphate.
This process, known as chemosynthesis, was recognized within the trophosome by Colleen Cavanaugh. [21] The soluble hemoglobins, present in the tentacles, are able to bind O 2 and H 2 S, which are necessary for chemosynthetic bacteria. Due to the capillaries, these compounds are absorbed by bacteria. [22]
In both these animals, the symbiotic bacteria that live in the trophosome oxidize sulfur or sulfide found in the worm's environment and produce organic molecules by carbon dioxide fixation that the hosts can use for nutrition and as an energy source. This process is known as chemosynthesis or chemolithoautotrophy. [citation needed]