enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alpha helix - Wikipedia

    en.wikipedia.org/wiki/Alpha_helix

    The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino acids. The alpha helix has a right-handed helix conformation in which every backbone N−H group hydrogen ...

  3. Protein secondary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_secondary_structure

    Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. [1] The two most common secondary structural elements are alpha helices and beta sheets , though beta turns and omega loops occur as well.

  4. Ramachandran plot - Wikipedia

    en.wikipedia.org/wiki/Ramachandran_plot

    Such a clustering is alternatively described in the ABEGO system, where each letter stands for α (and 3 10) helix, right-handed β sheets (and extended structures), left-handed helixes, left-handed sheets, and finally unplottable cis peptide bonds sometimes seen with proline; it has been used in the classification of motifs [14] and more ...

  5. Coiled coil - Wikipedia

    en.wikipedia.org/wiki/Coiled_coil

    The positions in the heptad repeat are usually labeled abcdefg, where a and d are the hydrophobic positions, often being occupied by isoleucine, leucine, or valine. Folding a sequence with this repeating pattern into an alpha-helical secondary structure causes the hydrophobic residues to be presented as a 'stripe' that coils gently around the ...

  6. Protein structure prediction - Wikipedia

    en.wikipedia.org/wiki/Protein_structure_prediction

    An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns). The alignment of the H-bonds ...

  7. Transmembrane protein - Wikipedia

    en.wikipedia.org/wiki/Transmembrane_protein

    A typical example is gramicidin A, a peptide that forms a dimeric transmembrane β-helix. [8] This peptide is secreted by gram-positive bacteria as an antibiotic. A transmembrane polyproline-II helix has not been reported in natural proteins. Nonetheless, this structure was experimentally observed in specifically designed artificial peptides. [9]

  8. Lifson–Roig model - Wikipedia

    en.wikipedia.org/wiki/Lifson–Roig_model

    In polymer science, the Lifson–Roig model [1] is a helix-coil transition model applied to the alpha helix-random coil transition of polypeptides; [2] it is a refinement of the Zimm–Bragg model that recognizes that a polypeptide alpha helix is only stabilized by a hydrogen bond only once three consecutive residues have adopted the helical conformation.

  9. Helical wheel - Wikipedia

    en.wikipedia.org/wiki/Helical_wheel

    A helical wheel is a type of plot or visual representation used to illustrate the properties of alpha helices in proteins. The sequence of amino acids that make up a helical region of the protein's secondary structure are plotted in a rotating manner where the angle of rotation between consecutive amino acids is 100°, so that the final ...