enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alpha helix - Wikipedia

    en.wikipedia.org/wiki/Alpha_helix

    The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino acids. The alpha helix has a right-handed helix conformation in which every backbone N−H group hydrogen ...

  3. Protein secondary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_secondary_structure

    Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. [1] The two most common secondary structural elements are alpha helices and beta sheets , though beta turns and omega loops occur as well.

  4. Lifson–Roig model - Wikipedia

    en.wikipedia.org/wiki/Lifson–Roig_model

    In polymer science, the Lifson–Roig model [1] is a helix-coil transition model applied to the alpha helix-random coil transition of polypeptides; [2] it is a refinement of the Zimm–Bragg model that recognizes that a polypeptide alpha helix is only stabilized by a hydrogen bond only once three consecutive residues have adopted the helical conformation.

  5. Transmembrane protein - Wikipedia

    en.wikipedia.org/wiki/Transmembrane_protein

    A relatively polar amphiphilic α-helix can adopt a transmembrane orientation in the translocon (although it would be at the membrane surface or unfolded in vitro), because its polar residues can face the central water-filled channel of the translocon. Such mechanism is necessary for incorporation of polar α-helices into structures of ...

  6. Protein structure prediction - Wikipedia

    en.wikipedia.org/wiki/Protein_structure_prediction

    An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns). The alignment of the H-bonds ...

  7. Supersecondary structure - Wikipedia

    en.wikipedia.org/wiki/Supersecondary_structure

    The beta strands are parallel, and the helix is also almost parallel to the strands. This structure can be seen in almost all proteins with parallel strands. The loops connecting the beta strands and alpha helix can vary in length and often binds ligands. Beta-alpha-beta helices can be either left-handed or right-handed.

  8. Coiled coil - Wikipedia

    en.wikipedia.org/wiki/Coiled_coil

    When the amino acids in the a and d positions were changed from I at a and L at d to I at a and I at d, a trimeric (three alpha-helices) coiled coil was formed. Furthermore, switching the positions of L to a and I to d resulted in the formation of a tetrameric (four alpha-helices) coiled coil. These represent a set of rules for the ...

  9. Voltage-gated potassium channel - Wikipedia

    en.wikipedia.org/wiki/Voltage-gated_potassium...

    There are at least two closed conformations. In the first, the channel can open if the membrane potential becomes more positive. This type of gating is mediated by a voltage-sensing domain that consists of the S4 alpha helix that contains 6–7 positive charges. Changes in membrane potential cause this alpha helix to move in the lipid bilayer.