enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tennis racket theorem - Wikipedia

    en.wikipedia.org/wiki/Tennis_racket_theorem

    The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...

  3. Vladimir Dzhanibekov - Wikipedia

    en.wikipedia.org/wiki/Vladimir_Dzhanibekov

    In 1985 he demonstrated stable and unstable rotation of a T-handle nut from the orbit, subsequently named the Dzhanibekov effect. The effect had been long known from the tennis racket theorem, which says that rotation about an object's intermediate principal axis is unstable while in free fall. In 1985 he was promoted to the rank of major ...

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is known as the squeeze theorem. [ 1 ] [ 2 ] This applies even in the cases that f ( x ) and g ( x ) take on different values at c , or are discontinuous at c . Polynomials and functions of the form x a

  5. File:Dzhanibekov effect.ogv - Wikipedia

    en.wikipedia.org/wiki/File:Dzhanibekov_effect.ogv

    The following other wikis use this file: Usage on ar.wikipedia.org مبرهنة مضرب التنس; Usage on de.wikipedia.org Dschanibekow-Effekt

  6. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    Download as PDF; Printable version; In other projects ... Fundamental theorem; Limits; Continuity; Rolle's theorem; ... is bounded, we can use the summation formula ...

  7. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  8. Layer cake representation - Wikipedia

    en.wikipedia.org/wiki/Layer_cake_representation

    Layer cake representation. In mathematics, the layer cake representation of a non-negative, real-valued measurable function defined on a measure space (,,) is the formula = (,) (),

  9. Künneth theorem - Wikipedia

    en.wikipedia.org/wiki/Künneth_theorem

    The classical statement of the Künneth theorem relates the singular homology of two topological spaces X and Y and their product space. In the simplest possible case the relationship is that of a tensor product , but for applications it is very often necessary to apply certain tools of homological algebra to express the answer.