enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Suzuki reaction - Wikipedia

    en.wikipedia.org/wiki/Suzuki_reaction

    The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. [1] [2] [3] It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic ...

  3. Protodeboronation - Wikipedia

    en.wikipedia.org/wiki/Protodeboronation

    The mechanism of protodeboronation was initially investigated by Kuivila in the 1960s, long before the discovery of the Suzuki reaction and the popularisation of boronic acids. Their studies focused on the protodeboronation of some substituted aromatic boronic acids in aqueous conditions, and they reported the presence of two distinct ...

  4. Tetrakis (triphenylphosphine)palladium (0) - Wikipedia

    en.wikipedia.org/wiki/Tetrakis(triphenylphosphine...

    Pd(PPh 3) 4 is widely used as a catalyst for palladium-catalyzed coupling reactions. [7] Prominent applications include the Heck reaction, Suzuki coupling, Stille coupling, Sonogashira coupling, and Negishi coupling. These processes begin with two successive ligand dissociations followed by the oxidative addition of an aryl halide to the Pd(0 ...

  5. Boronic acid - Wikipedia

    en.wikipedia.org/wiki/Boronic_acid

    Protodeboronation is a well-known undesired side reaction, and frequently associated with metal-catalysed coupling reactions that utilise boronic acids (see Suzuki reaction). For a given boronic acid, the propensity to undergo protodeboronation is highly variable and dependent on various factors, such as the reaction conditions employed and the ...

  6. Cross-coupling reaction - Wikipedia

    en.wikipedia.org/wiki/Cross-coupling_reaction

    Many mechanisms exist reflecting the myriad types of cross-couplings, including those that do not require metal catalysts. [7] Often, however, cross-coupling refers to a metal-catalyzed reaction of a nucleophilic partner with an electrophilic partner. Mechanism proposed for Kumada coupling (L = Ligand, Ar = Aryl).

  7. Palladium compounds - Wikipedia

    en.wikipedia.org/wiki/Palladium_compounds

    General scheme of the Suzuki reaction Mechanism of the Suzuki reaction Both ionic and coordination palladium compounds are frequently used to catalyze cross-coupling reactions . The catalytic ability is due to palladium's ability to switch between the Pd 0 and Pd 2+ oxidation states.

  8. Akira Suzuki - Wikipedia

    en.wikipedia.org/wiki/Akira_Suzuki

    Akira Suzuki (鈴木 章, Suzuki Akira, born September 12, 1930) is a Japanese chemist and Nobel Prize Laureate (2010), who first published the Suzuki reaction, the organic reaction of an aryl- or vinyl-boronic acid with an aryl- or vinyl-halide catalyzed by a palladium(0) complex, in 1979.

  9. Organotrifluoroborate - Wikipedia

    en.wikipedia.org/wiki/Organotrifluoroborate

    The mechanism of organotrifluoroborate-based Suzuki-Miyaura coupling reactions has recently been investigated in detail. The organotrifluoroborate hydrolyses to the corresponding boronic acid in situ, so a boronic acid can be used in place of an organotrifluoroborate, as long as it is added slowly and carefully. [7] [8]