Search results
Results from the WOW.Com Content Network
One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The algebra of sets is an interpretation or model of Boolean algebra, with union, intersection, set complement, U, and {} interpreting Boolean sum, product, complement, 1, and 0, respectively. The properties below are stated without proof, but can be derived from a small number of properties taken as axioms.
A function f : A × B → C in two variables, mapping two values from sets A and B, respectively, to a value in C associates to every pair (a,b) in A × B an element f(a, b) in C. Therefore, its graph consists of pairs of the form ((a, b), f(a, b)). Such pairs in which the first element is itself a pair are often identified with triples.
The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets A, B and C is given by
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
Three sets involved [ edit ] In the left hand sides of the following identities, L {\displaystyle L} is the L eft most set, M {\displaystyle M} is the M iddle set, and R {\displaystyle R} is the R ight most set.
In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the intuitive idea that if there are a ways of doing something and b ways of doing another thing, then there are a · b ways of performing both actions.