enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    The inverse Fourier transform converts the frequency-domain function back to the time-domain function. A spectrum analyzer is a tool commonly used to visualize electronic signals in the frequency domain. A frequency-domain representation may describe either a static function or a particular time period of a dynamic function (signal or system).

  3. Time domain - Wikipedia

    en.wikipedia.org/wiki/Time_domain

    In the time domain, the signal or function's value is known for all real numbers, for the case of continuous time, or at various separate instants in the case of discrete time. An oscilloscope is a tool commonly used to visualize real-world signals in the time domain. A time-domain graph shows how a signal changes with time, whereas a frequency ...

  4. Time–frequency analysis - Wikipedia

    en.wikipedia.org/wiki/Timefrequency_analysis

    In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function ...

  5. Time–frequency representation - Wikipedia

    en.wikipedia.org/wiki/Timefrequency...

    A time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. [1] Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD.

  6. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    In the time domain, the usual choice to explore the time response is through the step response to a step input, or the impulse response to a Dirac delta function input. [2] In the frequency domain (for example, looking at the Fourier transform of the step response, or using an input that is a simple sinusoidal function of time) the time ...

  7. Gabor transform - Wikipedia

    en.wikipedia.org/wiki/Gabor_transform

    Time/frequency distribution. The main application of the Gabor transform is used in time–frequency analysis.Take the following function as an example. The input signal has 1 Hz frequency component when t ≤ 0 and has 2 Hz frequency component when t > 0

  8. Chirp spectrum - Wikipedia

    en.wikipedia.org/wiki/Chirp_spectrum

    The spectrum of a chirp pulse describes its characteristics in terms of its frequency components. This frequency-domain representation is an alternative to the more familiar time-domain waveform, and the two versions are mathematically related by the Fourier transform.

  9. Spectrum analyzer - Wikipedia

    en.wikipedia.org/wiki/Spectrum_analyzer

    In a typical spectrum analyzer there are options to set the start, stop, and center frequency. The frequency halfway between the stop and start frequencies on a spectrum analyzer display is known as the center frequency. This is the frequency that is in the middle of the display's frequency axis.