Search results
Results from the WOW.Com Content Network
Transcription produces primary transcripts that are further modified by several processes. These processes include the 5' cap, 3'-polyadenylation, and alternative splicing. In particular, alternative splicing directly contributes to the diversity of mRNA found in cells. The modifications of primary transcripts have been further studied in ...
The transcription preinitiation complex is a large complex of proteins that is necessary for the transcription of protein-coding genes in eukaryotes and archaea. It attaches to the promoter of the DNA (e.i., TATA box) and helps position the RNA polymerase II to the gene transcription start sites, denatures the DNA, and then starts transcription.
Termination of transcription occurs in the ribosomal intergenic spacer region that contains several transcription termination sites upstream of a Pol I pausing site. Through a yet unknown mechanism, the 3’-end of the transcript is cleaved, generating a large primary rRNA molecule that is further processed into the mature 18S, 5.8S and 28S rRNAs.
Several cell function specific transcription factor proteins (in 2018 Lambert et al. indicated there were about 1,600 transcription factors in a human cell [41]) generally bind to specific motifs on an enhancer [22] and a small combination of these enhancer-bound transcription factors, when brought close to a promoter by a DNA loop, govern the ...
Transcription is the process of copying a segment of DNA into RNA for the purpose of gene expression. Some segments of DNA are transcribed into RNA molecules that can encode proteins, called messenger RNA (mRNA). Other segments of DNA are transcribed into RNA molecules called non-coding RNAs (ncRNAs).
Upstream transcription factors are proteins that bind somewhere upstream of the initiation site to stimulate or repress transcription. These are roughly synonymous with specific transcription factors , because they vary considerably depending on what recognition sequences are present in the proximity of the gene.
Transcription preinitiation complex, represented by the central cluster of proteins, causes RNA polymerase to bind to target DNA site. The PIC is able to bind both the promoter sequence near the gene to be transcribed and an enhancer sequence in a different part of the genome, allowing enhancer sequences to regulate a gene distant from it.
The protein SXL attaches to an intron segment located within the 5′ UTR segment of the primary transcript, which leads to the inclusion of the intron after processing. [14] This sequence allows the recruitment of proteins that bind simultaneously to both the 5′ and 3′ UTR , not allowing translation proteins to assemble.