enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and. the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. [1][2][3] This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. [4] Rank is thus a measure of the "nondegenerateness ...

  4. Nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Nullity_theorem

    The nullity theorem is a mathematical theorem about the inverse of a partitioned matrix, which states that the nullity of a block in a matrix equals the nullity of the complementary block in its inverse matrix. Here, the nullity is the dimension of the kernel. The theorem was proven in an abstract setting by Gustafson (1984), and for matrices ...

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The column space of an m × n matrix with components from is a linear subspace of the m -space . The dimension of the column space is called the rank of the matrix and is at most min (m, n). [1] A definition for matrices over a ring is also possible. The row space is defined similarly.

  6. Nullity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Nullity_(graph_theory)

    The nullity of a graph in the mathematical subject of graph theory can mean either of two unrelated numbers. If the graph has n vertices and m edges, then: In the matrix theory of graphs, the nullity of the graph is the nullity of the adjacency matrix A of the graph. The nullity of A is given by n − r where r is the rank of the adjacency matrix.

  7. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The lambdas are the eigenvalues of the matrix; they need not be distinct. In linear algebra, a Jordan normal form, also known as a Jordan canonical form, [1][2] is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis.

  8. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    The nullity theorem says that the nullity of A equals the nullity of the sub-block in the lower right of the inverse matrix, and that the nullity of B equals the nullity of the sub-block in the upper right of the inverse matrix. The inversion procedure that led to Equation performed matrix block operations that operated on C and D first.

  9. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    Smith normal form. In mathematics, the Smith normal form (sometimes abbreviated SNF[1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by ...