Search results
Results from the WOW.Com Content Network
To locate the critical F value in the F table, one needs to utilize the respective degrees of freedom. This involves identifying the appropriate row and column in the F table that corresponds to the significance level being tested (e.g., 5%). [6] How to use critical F values: If the F statistic < the critical F value Fail to reject null hypothesis
In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.
Hartley's test is related to Cochran's C test [6] [7] in which the test statistic is the ratio of max(s j 2) to the sum of all the group variances.Other tests related to these, have test statistics in which the within-group variances are replaced by the within-group range.
The value q s is the sample's test statistic. (The notation | x | means the absolute value of x; the magnitude of x with the sign set to +, regardless of the original sign of x.) This q s test statistic can then be compared to a q value for the chosen significance level α from a table of the studentized range distribution.
An approach used by the fisher.test function in R is to compute the p-value by summing the probabilities for all tables with probabilities less than or equal to that of the observed table. In the example here, the 2-sided p -value is twice the 1-sided value—but in general these can differ substantially for tables with small counts, unlike the ...
Duncan's multiple range test makes use of the studentized range distribution in order to determine critical values for comparisons between means. Note that different comparisons between means may differ by their significance levels- since the significance level is subject to the size of the subset of means in question.
Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.
The modifications of the statistic and tables of critical values are given by Stephens (1986) [2] for the exponential, extreme-value, Weibull, gamma, logistic, Cauchy, and von Mises distributions. Tests for the (two-parameter) log-normal distribution can be implemented by transforming the data using a logarithm and using the above test for ...