Search results
Results from the WOW.Com Content Network
Proliferating supporting cells can acquire hair cell fate in mitotic division. The mouse's neonatal supporting cells proliferate after hair cell death and regenerate hair cells after damage. [26] The neonatal cochlea is resistant to hair cell damage caused by exposure to noise or drugs, which are toxic to the cochlea, or auditory nerve, in vivo ...
Mammalian cochlear hair cells are of two anatomically and functionally distinct types, known as outer, and inner hair cells. Damage to these hair cells results in decreased hearing sensitivity, and because the inner ear hair cells cannot regenerate, this damage is permanent. [4]
Age-related hair cell degeneration is characterized by loss of stereocilia, shrinkage of hair cell soma, and reduction in outer hair cell mechanical properties, suggesting that functional decline in mechanotransduction and cochlear amplification precedes hair cell loss and contributes to age-related hearing loss.
The supporting cells are differentiated from the hair cells, when early embryonic hair cells express ligands that bind to the Notch receptors would prevent them from obtaining the hair cell phenotype, and these cells would differentiate into supporting cells, this is one of the reasons that the supporting cells are able to regenerate new hair ...
In the semicircular canals, the hair cells are found in the crista ampullaris, and the stereocilia protrude into the ampullary cupula. Here, the stereocilia are all oriented in the same direction. In the otoliths, the hair cells are topped by small, calcium carbonate crystals called otoconia. Unlike the semicircular ducts, the kinocilia of hair ...
Sensory hearing loss is caused by abnormal structure or function of the hair cells of the organ of Corti in the cochlea. [ disputed – discuss ] Neural hearing impairments are consequent upon damage to the eighth cranial nerve (the vestibulocochlear nerve ) or the auditory tracts of the brainstem .
The DRF funded research led, in 1987, to the discovery of spontaneous regeneration of hair cells in chickens, thus igniting the field of hair cell regeneration in humans. Research on the regrowth of cochlea cells may lead to medical treatments that restore hearing.
Once outer hair cells are damaged, they do not regenerate, and the result is a loss of sensitivity and an abnormally large growth of loudness (known as recruitment) in the part of the spectrum that the damaged cells serve. [13] While hearing loss has always been considered irreversible in mammals, fish and birds routinely repair such damage.