Ads
related to: how to figure out the adjacent side of a triangle
Search results
Results from the WOW.Com Content Network
A right triangle with the hypotenuse c. In a right triangle, the hypotenuse is the side that is opposite the right angle, while the other two sides are called the catheti or legs. [7] The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem.
A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees). The side opposite to the right angle is called the hypotenuse (side in the figure).
A triangle can be uniquely determined in this sense when given any of the following: [1] [2] Three sides (SSS) Two sides and the included angle (SAS, side-angle-side) Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. A side and the two angles adjacent to it (ASA)
Let ABC be a triangle with side lengths a, b, and c, with a 2 + b 2 = c 2. Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle.
A right-angled triangle where c 1 and c 2 are the catheti and h is the hypotenuse. In a right triangle, a cathetus (originally from the Greek word κάθετος, "perpendicular"; plural: catheti), commonly known as a leg, is either of the sides that are adjacent to the right angle. It is occasionally called a "side about the right angle".
The opposite side is the side opposite to the angle of interest; in this case, it is . The hypotenuse is the side opposite the right angle; in this case, it is . The hypotenuse is always the longest side of a right-angled triangle. The adjacent side is the remaining side; in this case, it is . It forms a side of (and is adjacent to) both the ...
SAS Postulate: Two sides in a triangle have the same length as two sides in the other triangle, and the included angles have the same measure. ASA: Two interior angles and the side between them in a triangle have the same measure and length, respectively, as those in the other triangle. (This is the basis of surveying by triangulation.)
Image mnemonic to help remember the ratios of sides of a right triangle. The sine, cosine, and tangent ratios in a right triangle can be remembered by representing them as strings of letters, for instance SOH-CAH-TOA in English: Sine = Opposite ÷ Hypotenuse Cosine = Adjacent ÷ Hypotenuse Tangent = Opposite ÷ Adjacent
Ads
related to: how to figure out the adjacent side of a triangle