Search results
Results from the WOW.Com Content Network
The map folding and stamp folding problems are related to a problem in the mathematics of origami of whether a square with a crease pattern can be folded to a flat figure. If a folding direction (either a mountain fold or a valley fold ) is assigned to each crease of a strip of stamps, it is possible to test whether the result can be folded ...
Map functions can be and often are defined in terms of a fold such as foldr, which means one can do a map-fold fusion: foldr f z . map g is equivalent to foldr (f . g) z. The implementation of map above on singly linked lists is not tail-recursive, so it may build up a lot of frames on the stack when called with a large list. Many languages ...
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
For example, SpeedTree is a middleware package that procedurally generates trees which can be used to quickly populate a forest. [1] Whereas most games use this technique to create a static environment for the final product, some employ procedural generation as a game mechanic , such as to create new environments for the player to explore.
For example, the Miura map fold is a rigid fold that has been used to deploy large solar panel arrays for space satellites. The napkin folding problem is the problem of whether a square or rectangle of paper can be folded so the perimeter of the flat figure is greater than that of the original square.
Prof. David Baker, a protein research scientist at the University of Washington, founded the Foldit project.Seth Cooper was the lead game designer. Before starting the project, Baker and his laboratory coworkers relied on another research project named Rosetta [5] to predict the native structures of various proteins using special computer protein structure prediction algorithms.
It includes the NP-completeness of testing flat foldability, [2] the problem of map folding (determining whether a pattern of mountain and valley folds forming a square grid can be folded flat), [2] [4] the work of Robert J. Lang using tree structures and circle packing to automate the design of origami folding patterns, [2] [4] the fold-and ...
Each node in the map space is associated with a "weight" vector, which is the position of the node in the input space. While nodes in the map space stay fixed, training consists in moving weight vectors toward the input data (reducing a distance metric such as Euclidean distance) without spoiling the topology induced from the map space. After ...