Search results
Results from the WOW.Com Content Network
At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).
Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...
The Sun is a rotating sphere of plasma at the center of the Solar System. It lacks a solid or liquid surface, so the interface separating its interior and its exterior is usually defined as the boundary where plasma becomes opaque to visible light, the photosphere. Since plasma is gaseous in nature, this surface has no permanent demarcated ...
A mean solar day (what we normally measure as a "day") is the average time between local solar noons ("average" since this varies slightly over a year). Earth makes one rotation around its axis each sidereal day; during that time it moves a short distance (about 1°) along its orbit around the Sun.
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
This is the coordinate system normally used to calculate the position of the Sun in terms of solar zenith angle and solar azimuth angle, and the two parameters can be used to depict the Sun path. [3] This calculation is useful in astronomy, navigation, surveying, meteorology, climatology, solar energy, and sundial design.
The solar zenith angle is the zenith angle of the sun, i.e., the angle between the sun’s rays and the vertical direction.It is the complement to the solar altitude or solar elevation, which is the altitude angle or elevation angle between the sun’s rays and a horizontal plane.
The Solar System remains in a relatively stable, slowly evolving state by following isolated, gravitationally bound orbits around the Sun. [28] Although the Solar System has been fairly stable for billions of years, it is technically chaotic, and may eventually be disrupted. There is a small chance that another star will pass through the Solar ...