Search results
Results from the WOW.Com Content Network
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
The isoionic point is the pH value at which a zwitterion molecule has an equal number of positive and negative charges and no adherent ionic species. It was first defined by S.P.L. Sørensen, Kaj Ulrik Linderstrøm-Lang and Ellen Lund in 1926 [1] and is mainly a term used in protein sciences.
When calculating the pH of a solution containing acids and/or bases, a chemical speciation calculation is used to determine the concentration of all chemical species present in the solution. The complexity of the procedure depends on the nature of the solution.
Speciation of ions refers to the changing concentration of varying forms of an ion as the pH of the solution changes. [1]The ratio of acid, AH and conjugate base, A −, concentrations varies as the difference between the pH and the pK a varies, in accordance with the Henderson-Hasselbalch equation.
In particular, the pH of a solution can be predicted when the analytical concentration and pK a values of all acids and bases are known; conversely, it is possible to calculate the equilibrium concentration of the acids and bases in solution when the pH is known. These calculations find application in many different areas of chemistry, biology ...
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]
In aqueous solution, ammonia deprotonates a small fraction of the water to give ammonium and hydroxide according to the following equilibrium: . NH 3 + H 2 O ⇌ NH + 4 + OH −.. In a 1 M ammonia solution, about 0.42% of the ammonia is converted to ammonium, equivalent to pH = 11.63 because [NH +
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). [1] However, pI is also used. [2] For brevity, this article uses pI.