Search results
Results from the WOW.Com Content Network
Given its greater H + concentration, the formula yields a lower pH value for the weak base. However, pH of bases is usually calculated in terms of the OH − concentration. This is done because the H + concentration is not a part of the reaction, whereas the OH − concentration is. The pOH is defined as:
Relation between pH and pOH. Red represents the acidic region. Blue represents the basic region. pOH is sometimes used as a measure of the concentration of hydroxide ions, OH −. By definition, pOH is the negative logarithm (to the base 10) of the hydroxide ion concentration (mol/L). pOH values can be derived from pH measurements and vice-versa.
The formula for this acid is generally written H 3 PO 2, but a more descriptive presentation is HOP(O)H 2, which highlights its monoprotic character. Salts derived from this acid are called hypophosphites. [3] HOP(O)H 2 exists in equilibrium with the minor tautomer HP(OH) 2. Sometimes the minor tautomer is called hypophosphorous acid and the ...
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.
Pauling's second rule is that the value of the first pK a for acids of the formula XO m (OH) n depends primarily on the number of oxo groups m, and is approximately independent of the number of hydroxy groups n, and also of the central atom X. Approximate values of pK a are 8 for m = 0, 2 for m = 1, −3 for m = 2 and < −10 for m = 3. [28]
The formula, Cu 2 CO 3 (OH) 2 shows that it is halfway between copper carbonate and copper hydroxide. Indeed, in the past the formula was written as CuCO 3 ·Cu(OH) 2. The crystal structure is made up of copper, carbonate and hydroxide ions. [36] The mineral atacamite is an example of a basic chloride. It has the formula Cu 2 Cl(OH) 3.
2 O (l) + Ind + (aq) + OH − (aq) where "IndOH" stands for the basic form and "Ind + " for the conjugate acid of the indicator. The ratio of concentration of conjugate acid/base to concentration of the acidic/basic indicator determines the pH (or pOH) of the solution and connects the color to the pH (or pOH) value.
Phosphinous acids are usually organophosphorus compounds with the formula R 2 POH. They are pyramidal in structure. Phosphorus is in the oxidation state III. Most phosphinous acids rapidly convert to the corresponding phosphine oxide, which are tetrahedral and are assigned oxidation state V.