Search results
Results from the WOW.Com Content Network
In solution, the resin is coated with positively charged counter-ions . Anion exchange resins will bind to negatively charged molecules, displacing the counter-ion. Anion exchange chromatography is commonly used to purify proteins, amino acids, sugars/carbohydrates and other acidic substances [3] with a negative charge at higher pH levels. The ...
Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. [1] It works on almost any kind of charged molecule —including small inorganic anions, [ 2 ] large proteins , [ 3 ] small nucleotides , [ 4 ] and amino acids .
Ion-exchange resin beads. An ion-exchange resin or ion-exchange polymer is a resin or polymer that acts as a medium for ion exchange, that is also known as an ionex. [1] It is an insoluble matrix (or support structure) normally in the form of small (0.25–1.43 mm radius) microbeads, usually white or yellowish, fabricated from an organic polymer substrate.
Solubility of salts in organic solvents is a function of both the cation and the anion. The solubility of cations in organic solvents can be enhanced when the anion is lipophilic. Similarly, the solubility of anions in organic solvents is enhanced with lipophilic cations. The most common lipophilic cations are quaternary ammonium cations ...
There are also amphoteric exchangers that are able to exchange both cations and anions simultaneously. However, the simultaneous exchange of cations and anions is often performed in mixed beds, which contain a mixture of anion- and cation-exchange resins, or passing the solution through several different ion-exchange materials. Ion exchanger.
Cellulose, dextran, agarose, and other insoluble complexes are unaffected because they compose inert matrices, hence why they are so often derivatized with strong and weak cation and anion exchangers in chromatography. DEAE-C beads have diethylaminoethyl chains covalently bound to oxygen atoms on the D-glucose subunits of cellulose.
Anion exchange resins have a positive charge and are used to retain and separate negatively charged compounds (anions), while cation exchange resins have a negative charge and are used to separate positively charged molecules (cations). Before the separation begins a buffer is pumped through the column to equilibrate the opposing charged ions.
In 1986, Regnier’s group synthesized a stationary phase that had characteristics of anion exchange chromatography (AEX) and hydrophobic interaction chromatography (HIC) on protein separation. [8] In 1998, a new form of MMC, hydrophobic charge induction chromatography (HCIC), was proposed by Burton and Harding.