enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnification - Wikipedia

    en.wikipedia.org/wiki/Magnification

    The postage stamp appears larger with the use of a magnifying glass. Stepwise magnification by 6% per frame into a 39-megapixel image. In the final frame, at about 170x, an image of a bystander is seen reflected in the man's cornea. Magnification is the process of enlarging the apparent size, not physical size, of

  3. f-number - Wikipedia

    en.wikipedia.org/wiki/F-number

    where N is the uncorrected f-number, NA i is the image-space numerical aperture of the lens, | | is the absolute value of the lens's magnification for an object a particular distance away, and P is the pupil magnification. Since the pupil magnification is seldom known it is often assumed to be 1, which is the correct value for all symmetric lenses.

  4. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    The effective focal length is the inverse of the optical power of an optical system, and is the value used to calculate the magnification of the system. [1] The imaging properties of the optical system can be modeled by replacing the system with an ideal thin lens with the same EFL. [2]

  5. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.

  6. Close-up lens - Wikipedia

    en.wikipedia.org/wiki/Close-up_lens

    That distance is sometimes given on the filter in millimeters. A +3 close-up lens has a maximal working distance of 0.333 m or 333 mm. The magnification is the focal distance of the objective lens (f) divided by the focal distance of the close-up lens; i.e., the focal distance of the objective lens (in meters) multiplied by the diopter value (D) of the close-up lens:

  7. Numerical aperture - Wikipedia

    en.wikipedia.org/wiki/Numerical_aperture

    In microscopy, NA is important because it indicates the resolving power of a lens. The size of the finest detail that can be resolved (the resolution) is proportional to ⁠ λ / 2NA ⁠, where λ is the wavelength of the light. A lens with a larger numerical aperture will be able to visualize finer details than a lens with a smaller numerical ...

  8. Entrance pupil - Wikipedia

    en.wikipedia.org/wiki/Entrance_pupil

    The f-number (also called the ' relative aperture '), N, is defined by N = f / E N, where f is the focal length and E N is the diameter of the entrance pupil. [2] Increasing the focal length of a lens (i.e., zooming in) will usually cause the f-number to increase, and the entrance pupil location to move further back along the optical axis.

  9. Angular resolution - Wikipedia

    en.wikipedia.org/wiki/Angular_resolution

    If the lens is focusing a beam of light with a finite extent (e.g., a laser beam), the value of D corresponds to the diameter of the light beam, not the lens. [Note 1] Since the spatial resolution is inversely proportional to D, this leads to the slightly surprising result that a wide beam of light may be focused on a smaller spot than a narrow ...