Search results
Results from the WOW.Com Content Network
Thrombin (Factor IIa) (EC 3.4.21.5, fibrose, thrombase, thrombofort, topical, thrombin-C, tropostasin, activated blood-coagulation factor II, E thrombin, beta-thrombin, gamma-thrombin) is a serine protease, that converts fibrinogen into strands of insoluble fibrin, as well as catalyzing many other coagulation-related reactions.
The energy required for translation of proteins is significant. For a protein containing n amino acids, the number of high-energy phosphate bonds required to translate it is 4 n -1. [ 8 ] The rate of translation varies; it is significantly higher in prokaryotic cells (up to 17–21 amino acid residues per second) than in eukaryotic cells (up to ...
To initiate the transcription process in a cell's nucleus, DNA double helices are unwound and hydrogen bonds connecting compatible nucleic acids of DNA are broken to produce two unconnected single DNA strands. [1] One strand of the DNA template is used for transcription of the single-stranded primary transcript mRNA.
[2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
Double stranded DNA that enters from the front of the enzyme is unzipped to avail the template strand for RNA synthesis. For every DNA base pair separated by the advancing polymerase, one hybrid RNA:DNA base pair is immediately formed. DNA strands and nascent RNA chain exit from separate channels; the two DNA strands reunite at the trailing end ...
If you’re stuck on today’s Wordle answer, we’re here to help—but beware of spoilers for Wordle 1243 ahead. Let's start with a few hints.
The translation machinery works relatively slowly compared to the enzyme systems that catalyze DNA replication. Proteins in bacteria are synthesized at a rate of only 18 amino acid residues per second, whereas bacterial replisomes synthesize DNA at a rate of 1000 nucleotides per second.