Search results
Results from the WOW.Com Content Network
Given a sample set, one can compute the studentized residuals and compare these to the expected frequency: points that fall more than 3 standard deviations from the norm are likely outliers (unless the sample size is significantly large, by which point one expects a sample this extreme), and if there are many points more than 3 standard ...
An observation is rarely more than a few standard deviations away from the mean. Chebyshev's inequality ensures that, for all distributions for which the standard deviation is defined, the amount of data within a number of standard deviations of the mean is at least as much as given in the following table.
Two (or three) out of three points in a row are more than 2 standard deviations from the mean in the same direction. There is a medium tendency for samples to be mediumly out of control. The side of the mean for the third point is unspecified.
Chebyshev's inequality is more general, stating that a minimum of just 75% of values must lie within two standard deviations of the mean and 88.89% within three standard deviations for a broad range of different probability distributions.
Statistics of the distribution of deviations are used as measures of statistical dispersion. A distribution with different standard deviations reflects varying degrees of dispersion among its data points. The first standard deviation from the mean in a normal distribution encompasses approximately 68% of the data.
About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [8] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.
2.1×10 −2: Probability of being dealt a three of a kind in poker 2.3×10 −2: Gaussian distribution: probability of a value being more than 2 standard deviations from the mean on a specific side [17] 2.7×10 −2: Probability of winning any prize in the Powerball with one ticket in 2006 3.3×10 −2: Probability of a human giving birth to ...
In probability and statistics, the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations. The approximate value of this number is 1.96, meaning that 95% of the area under a normal curve lies within approximately 1.96 standard deviations of the mean.