enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written ...

  3. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Accuracy is sometimes also viewed as a micro metric, to underline that it tends to be greatly affected by the particular class prevalence in a dataset and the classifier's biases. [14] Furthermore, it is also called top-1 accuracy to distinguish it from top-5 accuracy, common in convolutional neural network evaluation. To evaluate top-5 ...

  4. Equalized odds - Wikipedia

    en.wikipedia.org/wiki/Equalized_odds

    Equalized odds, [1] also referred to as conditional procedure accuracy equality and disparate mistreatment, is a measure of fairness in machine learning.A classifier satisfies this definition if the subjects in the protected and unprotected groups have equal true positive rate and equal false positive rate, [2] satisfying the formula:

  5. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  7. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    Less commonly, the metric of accuracy is used, is defined as the fraction of documents correctly classified compared to the documents (true positives plus true negatives divided by true positives plus true negatives plus false positives plus false negatives). None of these metrics take into account the ranking of results.

  8. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  9. Precision (computer science) - Wikipedia

    en.wikipedia.org/wiki/Precision_(computer_science)

    Of these, octuple-precision format is rarely used. The single- and double-precision formats are most widely used and supported on nearly all platforms. The use of half-precision format has been increasing especially in the field of machine learning since many machine learning algorithms are inherently error-tolerant.