Search results
Results from the WOW.Com Content Network
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
In other words, F is proportional to x to the power of the slope of the straight line of its log–log graph. Specifically, a straight line on a log–log plot containing points (x 0, F 0) and (x 1, F 1) will have the function: = (/) (/), Of course, the inverse is true too: any function of the form = will have a straight line as its log ...
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
On a linear–log plot, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph. The slope formula of the plot is: = (/) which leads to
Draw the vertical line through P and label its intersection with the given line S. At any point T on the line, draw a right triangle TVU whose sides are horizontal and vertical line segments with hypotenuse TU on the given line and horizontal side of length |B| (see diagram). The vertical side of ∆TVU will have length |A| since the line has ...
The graph of the linear approximation is the tangent line of the graph = at the point (, ()). The derivative slope f ′ ( c ) {\displaystyle f\,'(c)} generally varies with the point c . Linear functions can be characterized as the only real functions whose derivative is constant: if f ′ ( x ) = a {\displaystyle f\,'(x)=a} for all x , then f ...
l = slope length α = angle of inclination. The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line refers to the tangent of the angle of that surface to the horizontal. It is a special case of the slope, where zero indicates horizontality. A larger number ...