Search results
Results from the WOW.Com Content Network
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
As well, linear recurrences with polynomial coefficients depending on are also important, because many common elementary functions and special functions have a Taylor series whose coefficients satisfy such a recurrence relation (see holonomic function). Solving a recurrence relation means obtaining a closed-form solution: a non-recursive ...
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
The ERF method of finding a particular solution of a non-homogeneous differential equation is applicable if the non-homogeneous equation is or could be transformed to form () = + + +; where , are real or complex numbers and () is homogeneous linear differential equation of any order. Then, the exponential response formula can be applied to each ...
This characterization is because the order-linear recurrence relation can be understood as a proof of linear dependence between the sequences (+) = for =, …,. An extension of this argument shows that the order of the sequence is equal to the dimension of the sequence space generated by ( s n + r ) n = 0 ∞ {\displaystyle (s_{n+r})_{n=0 ...
Some authors use the transpose of this matrix, (), which is more convenient for some purposes such as linear recurrence relations (see below). C ( p ) {\displaystyle C(p)} is defined from the coefficients of p ( x ) {\displaystyle p(x)} , while the characteristic polynomial as well as the minimal polynomial of C ( p ) {\displaystyle C(p)} are ...
It is generally used in solving non-linear equations like Euler's equations in computational fluid dynamics. Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To ...
A matrix difference equation is a difference equation in which the value of a vector (or sometimes, a matrix) of variables at one point in time is related to its own value at one or more previous points in time, using matrices. [1] [2] The order of the equation is the maximum time gap between any two indicated values of the variable vector. For ...