Search results
Results from the WOW.Com Content Network
Thomson's model marks the moment when the development of atomic theory passed from chemists to physicists. While atomic theory was widely accepted by chemists by the end of the 19th century, physicists remained skeptical because the atomic model lacked any properties which concerned their field, such as electric charge, magnetic moment, volume, or absolute mass.
Thomson's prize-winning master's work, Treatise on the motion of vortex rings, shows his early interest in atomic structure. [3] In it, Thomson mathematically described the motions of William Thomson's vortex theory of atoms. [17] Thomson published a number of papers addressing both mathematical and experimental issues of electromagnetism.
The Thomson problem is a natural consequence of J. J. Thomson's plum pudding model in the absence of its uniform positive background charge. [ 12 ] "No fact discovered about the atom can be trivial, nor fail to accelerate the progress of physical science, for the greater part of natural philosophy is the outcome of the structure and mechanism ...
Thomson further explained that ions are atoms that have a surplus or shortage of electrons. [53] Thomson's model is popularly known as the plum pudding model, based on the idea that the electrons are distributed throughout the sphere of positive charge with the same density as raisins in a plum pudding. Neither Thomson nor his colleagues ever ...
His views were out of step with the accepted science of the time and the latter theory had particularly been attacked by John Dalton [2] and John Leslie. [ 3 ] Rumford was heavily influenced by the argument from design [ 4 ] and it is likely that he wished to grant water a privileged and providential status in the regulation of human life.
Between 1870 and 1890 the vortex atom theory, which hypothesised that an atom was a vortex in the aether, was popular among British physicists and mathematicians. William Thomson, who became better known as Lord Kelvin, first conjectured that atoms might be vortices in the aether that pervades space.
Thomson scattering is a model for the effect of electromagnetic fields on electrons when the field energy is much less than the rest mass of the electron .In the model the electric field of the incident wave accelerates the charged particle, causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered.
About 60 scientific papers were written by approximately 25 scientists. Following the lead of Thomson and Tait, [55] the branch of topology called knot theory was developed. Thomson's initiative in this complex study that continues to inspire new mathematics has led to persistence of the topic in history of science. [56]