Search results
Results from the WOW.Com Content Network
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
Complementarity as a physical model derives from Niels Bohr's 1927 presentation in Como, Italy, at a scientific celebration of the work of Alessandro Volta 100 years previous. [4]: 103 Bohr's subject was complementarity, the idea that measurements of quantum events provide complementary information through seemingly contradictory results. [5]
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.
In a 1960 review of Heisenberg's book, Bohr's close collaborator Léon Rosenfeld called the term an "ambiguous expression" and suggested it be discarded. [22] However, this did not come to pass, and the term entered widespread use. [16] [19] Bohr's ideas in particular are distinct despite the use of his Copenhagen home in the name of the ...
But for Bohr the important result was the use of classical analogies and the Bohr atomic model to fix inconsistencies in Planck's derivation of the blackbody radiation formula. [9]: 118 Bohr used the word "correspondence" in italics in lectures and writing before calling it a correspondence principle. He viewed this as a correspondence between ...
The Bohr–Van Leeuwen theorem is useful in several applications including plasma physics: "All these references base their discussion of the Bohr–Van Leeuwen theorem on Niels Bohr's physical model, in which perfectly reflecting walls are necessary to provide the currents that cancel the net contribution from the interior of an element of ...
Bohr continued to dispute the existence of the quantum of light (photon) and along with Hans Kramers and John C. Slater elaborated the BKS theory in 1924. However, after the 1925 Bothe–Geiger coincidence experiment , BKS was proved to be wrong and Einstein's hypothesis was proven to be correct.
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .