Search results
Results from the WOW.Com Content Network
In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases. Nucleophilic describes the affinity of a nucleophile to bond with positively charged ...
The two main mechanisms were the S N 1 reaction and the S N 2 reaction, where S stands for substitution, N stands for nucleophilic, and the number represents the kinetic order of the reaction. [4] In the S N 2 reaction, the addition of the nucleophile and the elimination of leaving group take place simultaneously (i.e. a concerted reaction).
Many reactions studied are solvolysis reactions where a solvent molecule (often an alcohol) is the nucleophile. While still a second order reaction mechanistically, the reaction is kinetically first order as the concentration of the nucleophile–the solvent molecule, is effectively constant during the reaction.
When the solvent is also a nucleophile such as dioxane two successive S N 2 reactions take place and the stereochemistry is again retention. With standard S N 1 reaction conditions the reaction outcome is retention via a competing S N i mechanism and not racemization and with pyridine added the result is again inversion. [5] [3]
In such reactions, the nucleophile is usually electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. An example of nucleophilic substitution is the hydrolysis of an alkyl bromide, R−Br, under basic conditions, where the attacking nucleophile is the base OH − and the leaving group is Br −:
In many nucleophilic reactions, addition to the carbonyl group is very important. In some cases, the C=O double bond is reduced to a C-O single bond when the nucleophile bonds with carbon. For example, in the cyanohydrin reaction a cyanide ion forms a C-C bond by breaking the carbonyl's double bond to form a cyanohydrin.
This reaction differs from a common S N 2 reaction, because it happens at a trigonal carbon atom (sp 2 hybridization). The mechanism of S N 2 reaction does not occur due to steric hindrance of the benzene ring. In order to attack the C atom, the nucleophile must approach in line with the C-LG (leaving group) bond from the back, where the ...
Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson.In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism.