enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discretization of continuous features - Wikipedia

    en.wikipedia.org/wiki/Discretization_of...

    Typically data is discretized into partitions of K equal lengths/width (equal intervals) or K% of the total data (equal frequencies). [1] Mechanisms for discretizing continuous data include Fayyad & Irani's MDL method, [2] which uses mutual information to recursively define the best bins, CAIM, CACC, Ameva, and many others [3]

  3. Discretization - Wikipedia

    en.wikipedia.org/wiki/Discretization

    Discretization is also related to discrete mathematics, and is an important component of granular computing. In this context, discretization may also refer to modification of variable or category granularity, as when multiple discrete variables are aggregated or multiple discrete categories fused.

  4. Data binning - Wikipedia

    en.wikipedia.org/wiki/Data_binning

    Data binning, also called data discrete binning or data bucketing, is a data pre-processing technique used to reduce the effects of minor observation errors. The original data values which fall into a given small interval, a bin , are replaced by a value representative of that interval, often a central value ( mean or median ).

  5. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    The quality and duration of simulated FDM solution depends on the discretization equation selection and the step sizes (time and space steps). The data quality and simulation duration increase significantly with smaller step size. [2] Therefore, a reasonable balance between data quality and simulation duration is necessary for practical usage.

  7. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. [1] Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition, classification, and regression tasks.

  8. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).

  9. Proper generalized decomposition - Wikipedia

    en.wikipedia.org/wiki/Proper_generalized...

    Domain discretization [ edit ] The discretization of the domain is a well defined set of procedures that cover (a) the creation of finite element meshes, (b) the definition of basis function on reference elements (also called shape functions) and (c) the mapping of reference elements onto the elements of the mesh.