enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the ...

  3. Horizontal branch - Wikipedia

    en.wikipedia.org/wiki/Horizontal_branch

    The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen fusion (via the CNO cycle ) in a shell surrounding the core.

  4. Star - Wikipedia

    en.wikipedia.org/wiki/Star

    The evolution of binary star and higher-order star systems is intensely researched since so many stars have been found to be members of binary systems. Around half of Sun-like stars, and an even higher proportion of more massive stars, form in multiple systems, and this may greatly influence such phenomena as novae and supernovae, the formation ...

  5. Common envelope - Wikipedia

    en.wikipedia.org/wiki/Common_envelope

    In all these examples there is a compact remnant (a white dwarf, neutron star or black hole) which must have been the core of a star which was much larger than the current orbital separation. If these systems have undergone common envelope evolution then their present close separation is explained.

  6. Star formation - Wikipedia

    en.wikipedia.org/wiki/Star_formation

    The W51 nebula in Aquila - one of the largest star factories in the Milky Way (August 25, 2020). Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. [1]

  7. Stellar structure - Wikipedia

    en.wikipedia.org/wiki/Stellar_structure

    Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, reflecting their elemental makeup and energy transport mechanisms.

  8. Portal:Stars - Wikipedia

    en.wikipedia.org/wiki/Portal:Stars

    A star's life begins with the gravitational collapse of a gaseous nebula of material largely comprising hydrogen, helium, and trace heavier elements. Its total mass mainly determines its evolution and eventual fate. A star shines for most of its active life due to the thermonuclear fusion of hydrogen into helium in its core.

  9. Main sequence - Wikipedia

    en.wikipedia.org/wiki/Main_sequence

    where M and L are the mass and luminosity of the star, respectively, is a solar mass, is the solar luminosity and is the star's estimated main-sequence lifetime. Although more massive stars have more fuel to burn and might intuitively be expected to last longer, they also radiate a proportionately greater amount with increased mass.