enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}

  3. Three-term recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Three-term_recurrence_relation

    If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .

  4. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc. The solution of such an equation is a function of t, and not of any iterate values, giving the value of the iterate at any time.

  5. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The order of the sequence is the smallest positive integer such that the sequence satisfies a recurrence of order d, or = for the everywhere-zero sequence. [ citation needed ] The definition above allows eventually- periodic sequences such as 1 , 0 , 0 , 0 , … {\displaystyle 1,0,0,0,\ldots } and 0 , 1 , 0 , 0 , … {\displaystyle 0,1,0,0 ...

  6. Lucas sequence - Wikipedia

    en.wikipedia.org/wiki/Lucas_sequence

    LUC is a public-key cryptosystem based on Lucas sequences [5] that implements the analogs of ElGamal (LUCELG), Diffie–Hellman (LUCDIF), and RSA (LUCRSA). The encryption of the message in LUC is computed as a term of certain Lucas sequence, instead of using modular exponentiation as in RSA or Diffie–Hellman.

  7. Padovan sequence - Wikipedia

    en.wikipedia.org/wiki/Padovan_sequence

    In the spiral, each triangle shares a side with two others giving a visual proof that the Padovan sequence also satisfies the recurrence relation = + ()Starting from this, the defining recurrence and other recurrences as they are discovered, one can create an infinite number of further recurrences by repeatedly replacing () by () + ()

  8. A year before leaving her home and allegedly being held captive and abused on Long Island, 14-year-old Emmarae Gervasi was like many other teens, posting on TikTok and Instagram.. However, some of ...

  9. Skolem problem - Wikipedia

    en.wikipedia.org/wiki/Skolem_problem

    The Skolem problem is named after Thoralf Skolem, because of his 1933 paper proving the Skolem–Mahler–Lech theorem on the zeros of a sequence satisfying a linear recurrence with constant coefficients. [2] This theorem states that, if such a sequence has zeros, then with finitely many exceptions the positions of the zeros repeat regularly.