Search results
Results from the WOW.Com Content Network
This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
It was used in the world record calculations of 2.7 trillion digits of π in December 2009, [3] 10 trillion digits in October 2011, [4] [5] 22.4 trillion digits in November 2016, [6] 31.4 trillion digits in September 2018–January 2019, [7] 50 trillion digits on January 29, 2020, [8] 62.8 trillion digits on August 14, 2021, [9] 100 trillion ...
Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.
The same approach can be used to calculate digits of the binary expansion of ln(2) starting from an arbitrary nth position. The number of terms in the "head" sum increases linearly with n , but the complexity of each term only increases with the logarithm of n if an efficient method of modular exponentiation is used.
For the first term in the Taylor series, all digits must be processed. In the last term of the Taylor series, however, there's only one digit remaining to be processed. In all of the intervening terms, the number of digits to be processed can be approximated by linear interpolation. Thus the total is given by:
Super PI by Kanada Laboratory [101] in the University of Tokyo is the program for Microsoft Windows for runs from 16,000 to 33,550,000 digits. It can compute one million digits in 40 minutes, two million digits in 90 minutes and four million digits in 220 minutes on a Pentium 90 MHz.
Super PI finishing a calculation of 1,048,576, or 2 20 digits of pi. Super PI is a computer program that calculates pi to a specified number of digits after the decimal point—up to a maximum of 32 million. It uses Gauss–Legendre algorithm and is a Windows port of the program used by Yasumasa Kanada in 1995 to compute pi to 2 32 digits.