enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    We also have the rule that 10 x + y is divisible iff x + 4 y is divisible by 13. For example, to test the divisibility of 1761 by 13 we can reduce this to the divisibility of 461 by the first rule. Using the second rule, this reduces to the divisibility of 50, and doing that again yields 5. So, 1761 is not divisible by 13.

  3. 1001 (number) - Wikipedia

    en.wikipedia.org/wiki/1001_(number)

    Two properties of 1001 are the basis of a divisibility test for 7, 11 and 13. The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors ...

  4. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd.

  5. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...

  6. Divisibility (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Divisibility_(ring_theory)

    If there exists an element x in R with ax = b, one says that a is a left divisor of b and that b is a right multiple of a. [1] Similarly, if there exists an element y in R with ya = b, one says that a is a right divisor of b and that b is a left multiple of a.

  7. Division lattice - Wikipedia

    en.wikipedia.org/wiki/Division_lattice

    The non-negative integers partially ordered by divisibility. The division lattice is an infinite complete bounded distributive lattice whose elements are the natural numbers ordered by divisibility. Its least element is 1, which divides all natural numbers, while its greatest element is 0, which is divisible by all natural numbers.

  8. Mirsky's theorem - Wikipedia

    en.wikipedia.org/wiki/Mirsky's_theorem

    The height of a partially ordered set is defined to be the maximum cardinality of a chain, a totally ordered subset of the given partial order. For instance, in the set of positive integers from 1 to N, ordered by divisibility, one of the largest chains consists of the powers of two that lie within that range, from which it follows that the height of this partial order is + ⌊ ⁡ ⌋.

  9. Dilworth's theorem - Wikipedia

    en.wikipedia.org/wiki/Dilworth's_theorem

    If we order the integers in the interval [1, 2n] by divisibility, the subinterval [n + 1, 2n] forms an antichain with cardinality n. A partition of this partial order into n chains is easy to achieve: for each odd integer m in [1,2 n ], form a chain of the numbers of the form m 2 i .