Search results
Results from the WOW.Com Content Network
Sketch 1: Instantaneous center P of a moving plane. The instant center of rotation (also known as instantaneous velocity center, [1] instantaneous center, or pole of planar displacement) of a body undergoing planar movement is a point that has zero velocity at a particular instant of time.
General parameters used for constructing nose cone profiles. Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance.
In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli's principle, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an ...
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or d S equivalently (resolved into components , θ is angle to ...
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle θ as time elapses. Archimedes described such a spiral in his book On Spirals . Conon of Samos was a friend of his and Pappus states that this spiral was discovered by Conon.
Let γ be as above, and fix t.We want to find the radius ρ of a parametrized circle which matches γ in its zeroth, first, and second derivatives at t.Clearly the radius will not depend on the position γ(t), only on the velocity γ′(t) and acceleration γ″(t).
Pressure head is a component of hydraulic head, in which it is combined with elevation head. When considering dynamic (flowing) systems, there is a third term needed: velocity head. Thus, the three terms of velocity head, elevation head, and pressure head appear in the head equation derived from the Bernoulli equation for incompressible fluids: