enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector area - Wikipedia

    en.wikipedia.org/wiki/Vector_area

    The vector area of a parallelogram is given by the cross product of the two vectors that span it; it is twice the (vector) area of the triangle formed by the same vectors. In general, the vector area of any surface whose boundary consists of a sequence of straight line segments (analogous to a polygon in two dimensions) can be calculated using ...

  3. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. [a] Three equivalent definitions of parallelepiped are a hexahedron with three pairs of parallel faces,

  4. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...

  6. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    The area of a parallelogram in terms of the determinant of the matrix of coordinates of two of its vertices. The two-dimensional Euclidean vector space is a real vector space equipped with a basis consisting of a pair of orthogonal unit vectors = [], = [].

  7. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  8. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    To accommodate for the change of coordinates the magnitude of the Jacobian determinant arises as a multiplicative factor within the integral. This is because the n-dimensional dV element is in general a parallelepiped in the new coordinate system, and the n-volume of a parallelepiped is the determinant of its edge vectors.