Search results
Results from the WOW.Com Content Network
A typical evaporative, forced draft open-loop cooling tower rejecting heat from the condenser water loop of an industrial chiller unit Natural draft wet cooling hyperboloid towers at Didcot Power Station (UK) Forced draft wet cooling towers (height: 34 meters) and natural draft wet cooling tower (height: 122 meters) in Westphalia, Germany Natural draft wet cooling tower in Dresden (Germany)
The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work (energy) required. [ 1 ] [ 2 ] Higher COPs equate to higher efficiency, lower energy (power) consumption and thus lower operating costs.
The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5] The SC, or shading coefficient, is used widely in the evaluation of heat gain through glass and windows. [1] [5] Finally, the SCL, or solar cooling load factor, accounts for the variables associated with solar heat load.
Cooling towers operate as large heat exchangers by absorbing the latent heat of vaporization of the working fluid and simultaneously evaporating cooling water to the atmosphere. While many substances can be used as the working fluid, water is usually chosen for its simple chemistry, relative abundance, low cost, and thermodynamic properties .
In systems involving heat transfer, a condenser is a heat exchanger used to condense a gaseous substance into a liquid state through cooling. In doing so, the latent heat is released by the substance and transferred to the surrounding environment. Condensers are used for efficient heat rejection in many industrial systems.
The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.
It was originally defined as the rate of heat transfer that results in the freezing or melting of 1 short ton (2,000 lb; 907 kg) of pure ice at 0 °C (32 °F) in 24 hours. [1] [2] The modern definition is exactly 12,000 Btu IT /h (3.516853 kW). Air-conditioning and refrigeration equipment capacity in the U.S. is often specified in "tons" (of ...
For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is ...