Search results
Results from the WOW.Com Content Network
The function = {< has a limit at every non-zero x-coordinate (the limit equals 1 for negative x and equals 2 for positive x). The limit at x = 0 does not exist (the left-hand limit equals 1, whereas the right-hand limit equals 2).
On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges to x 0, then the limit of the function f(x) as x approaches x 0 is equal to L. [10] One such sequence would be {x 0 + 1/n}.
A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .
However, not all functions are continuous. If a function is not continuous at a limit point (also called "accumulation point" or "cluster point") of its domain, one says that it has a discontinuity there. The set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function.
If () for all x in an interval that contains c, except possibly c itself, and the limit of () and () both exist at c, then [5] () If lim x → c f ( x ) = lim x → c h ( x ) = L {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and f ( x ) ≤ g ( x ) ≤ h ( x ) {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that ...
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
The pointwise limit of a sequence of continuous functions may be a discontinuous function, but only if the convergence is not uniform. For example, f ( x ) = lim n → ∞ cos ( π x ) 2 n {\displaystyle f(x)=\lim _{n\to \infty }\cos(\pi x)^{2n}} takes the value 1 {\displaystyle 1} when x {\displaystyle x} is an integer and 0 {\displaystyle ...
For example, the equation y 2 − x 3 = 0 defines a curve that has a cusp at the origin x = y = 0. One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at other points. In fact, in this case, the x-axis is a "double tangent."