enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    Note: the Strickler coefficient is the reciprocal of Manning coefficient: Ks =1/ n, having dimension of L 1/3 /T and units of m 1/3 /s; it varies from 20 m 1/3 /s (rough stone and rough surface) to 80 m 1/3 /s (smooth concrete and cast iron). The discharge formula, Q = A V, can be used to rewrite Gauckler–Manning's equation by substitution for V.

  3. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where

  4. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    is the roughness of the inner surface of the pipe (dimension of length) D is inner pipe diameter; The Swamee–Jain equation is used to solve directly for the Darcy–Weisbach friction factor f for a full-flowing circular pipe. It is an approximation of the implicit Colebrook–White equation. [10]

  5. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.

  6. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In this expression for Reynolds number, the characteristic length D is taken to be the hydraulic diameter of the pipe, which, for a cylindrical pipe flowing full, equals the inside diameter. In Figures 1 and 2 of friction factor versus Reynolds number, the regime Re < 2000 demonstrates laminar flow; the friction factor is well represented by ...

  7. Wetted perimeter - Wikipedia

    en.wikipedia.org/wiki/Wetted_perimeter

    The length of line of the intersection of channel wetted surface with a cross sectional plane normal to the flow direction. The term wetted perimeter is common in civil engineering , environmental engineering , hydrology , geomorphology , and heat transfer applications; it is associated with the hydraulic diameter or hydraulic radius .

  8. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In the case of a non-circular cross-section of a pipe, the same formula can be used to find the entry length with a little modification. A new parameter “hydraulic diameter” relates the flow in non-circular pipe to that of circular pipe flow. This is valid as long as the cross-sectional area shape is not too exaggerated.

  9. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...