Search results
Results from the WOW.Com Content Network
Circular buffering makes a good implementation strategy for a queue that has fixed maximum size. Should a maximum size be adopted for a queue, then a circular buffer is a completely ideal implementation; all queue operations are constant time. However, expanding a circular buffer requires shifting memory, which is comparatively costly.
A Round Robin preemptive scheduling example with quantum=3. Round-robin (RR) is one of the algorithms employed by process and network schedulers in computing. [1] [2] As the term is generally used, time slices (also known as time quanta) [3] are assigned to each process in equal portions and in circular order, handling all processes without priority (also known as cyclic executive).
Representation of a FIFO queue with enqueue and dequeue operations. Depending on the application, a FIFO could be implemented as a hardware shift register, or using different memory structures, typically a circular buffer or a kind of list. For information on the abstract data structure, see Queue (data structure).
A queue has two ends, the top, which is the only position at which the push operation may occur, and the bottom, which is the only position at which the pop operation may occur. A queue may be implemented as circular buffers and linked lists, or by using both the stack pointer and the base pointer.
With a circular list, a pointer to the last node gives easy access also to the first node, by following one link. Thus, in applications that require access to both ends of the list (e.g., in the implementation of a queue), a circular structure allows one to handle the structure by a single pointer, instead of two.
When scheduling packets, if all packets have the same size, then WRR and IWRR are an approximation of Generalized processor sharing: [8] a queue will receive a long term part of the bandwidth equals to = (if all queues are active) while GPS serves infinitesimal amounts of data from each nonempty queue and offer this part on any interval.
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology.It defines a large number of terms relating to algorithms and data structures.