Search results
Results from the WOW.Com Content Network
In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.
In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1] In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each ...
A bridge circuit is a topology of electrical circuitry in which two circuit branches (usually in parallel with each other) are "bridged" by a third branch connected between the first two branches at some intermediate point along them. The bridge was originally developed for laboratory measurement purposes and one of the intermediate bridging ...
Power varies according to the square of total voltage or current and the square of the sum is not generally equal to the sum of the squares. Total power in an element can be found by applying superposition to the voltages and current independently and then calculating power from the total voltage and current.
A lower power factor circuit will have a higher apparent power and higher losses for the same amount of active power. The power factor is 1.0 when the voltage and current are in phase . It is zero when the current leads or lags the voltage by 90 degrees.
The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no resistance or load connected to, then R no = V o / I no; equivalently, this is the resistance between the terminals with all (independent) voltage sources short-circuited and independent current sources open-circuited (i.e., each independent ...
The output power of a motor is the product of the torque that the motor generates and the angular velocity of its output shaft. Likewise, the power dissipated in an electrical element of a circuit is the product of the current flowing through the element and of the voltage across the element. [1] [2]
Indeed, a graph has treewidth at most 2 if and only if it has branchwidth at most 2, if and only if every biconnected component is a series–parallel graph. [4] [5] The maximal series–parallel graphs, graphs to which no additional edges can be added without destroying their series–parallel structure, are exactly the 2-trees.